Tuning Attention to Object Categories: Spatially Global Effects of Attention to Faces in Visual Processing

Viola S. Störmer¹, Michael A. Cohen², and George A. Alvarez³

Abstract
Feature-based attention is known to enhance visual processing globally across the visual field, even at task-irrelevant locations. Here, we asked whether attention to object categories, in particular faces, shows similar location-independent tuning. Using EEG, we measured the face-selective N170 component of the EEG signal to examine neural responses to faces at task-irrelevant locations while participants attended to faces at another task-relevant location. Across two experiments, we found that visual processing of faces was amplified at task-irrelevant locations when participants attended to faces relative to when participants attended to either buildings or scrambled face parts. The fact that we see this enhancement with the N170 suggests that these attentional effects occur at the earliest stage of face processing. Two additional behavioral experiments showed that it is easier to attend to the same object category across the visual field relative to two distinct categories, consistent with object-based attention spreading globally. Together, these results suggest that attention to high-level object categories shows similar spatially global effects on visual processing as attention to simple, individual, low-level features.

INTRODUCTION
One critical aspect of human visual cognition is the ability to rapidly detect task-relevant objects in cluttered visual environments. For example, when looking for a person in a busy street scene, the ability to selectively focus on faces or bodies while disregarding other objects would enhance pedestrian detection. It has been shown that attention to visual objects modulates neural activity in category-selective regions of higher visual cortex. For example, when attending to a face, neural activity increases in brain regions that are sensitive to faces (e.g., the fusiform face area), relative to when attending to other objects (Serences, Schwarz, Courtney, Golay, & Yantis, 2004; Wojciulik, Kanwisher, & Driver, 1998). These effects of object-based attention on visual processing have often been studied by asking participants to attend to one of two superimposed objects (e.g., a face and a house) presented on top of one another so that they compete at the same location (Cohen & Tong, 2015; Baldauf & Desimone, 2014; O’Craven et al., 1999). Thus, any observed attentional effects cannot be attributed to spatial attention and instead must be driven by object-based attention. Of course, attention not only modulates object-selective regions; it also alters neural processing of lower level regions (e.g., MT, V4) that are sensitive to basic features such as motion and color. Critically, it has been repeatedly shown that neural responses in these lower level regions are enhanced not only at the attended location but also in other unattended regions of space (Störmer & Alvarez, 2014; Andersen, Hillyard, & Müller, 2013; Zhang & Luck, 2009; Serences & Boynton, 2007; Saenz, Buracas, & Boynton, 2002; Treue & Martinez Trujillo, 1999). It should be noted that these previous studies have demonstrated this automatic spread of attention only in cases when observers are attending to single basic features like color, orientation, or motion direction. No such effects have been observed with more complex objects. This may be because of the fact that object-based attention requires selection processes that encompass multiple features that are organized in a specific configuration while still allowing for some degree of variation of these features, because low-level properties of objects differ substantially even within a category (e.g., for faces: hairstyle, race, or viewpoint). Given this complexity of attending to an object category relative to a single feature, it cannot be assumed that high-level attentional tuning processes would be spatially global in the same way as attention to single features.

Here, we test whether, and at what point in time, attention spreads globally across the visual field for high-level object categories. We focus on the category of faces, which are processed holistically, are highly familiar, and provide an established neural marker in the EEG signal—the N170 (Rossion, 2014; Rossion & Jacques, 2008; McCarthy, Puce, Belger, & Allison, 1999; Bentin et al.,

¹University of California, San Diego, ²Amherst College, ³Harvard University

© 2019 Massachusetts Institute of Technology

Journal of Cognitive Neuroscience XY, pp. 1–11
doi:10.1162/jocn_a_01400
We asked participants to attend to different object categories in rapidly presented image streams and measured the N170 component to stimuli that were presented at a location outside the focus of attention (i.e., the hemifield opposite of the attended stream). In the first experiment, participants attended to either faces among buildings or buildings among faces. In the second experiment, we examined the extent to which the particular configuration of face parts (i.e., eyes, mouth, and nose) mattered by having participants attend to scrambled face parts among buildings. Across both experiments, we found that the face-sensitive N170 elicited by stimuli at task-irrelevant locations was boosted when participants attended to intact faces, but not when attending to either buildings or scrambled face parts. In two subsequent behavioral experiments, we then examined the behavioral consequences of these effects and found that it is more difficult to attend to two categories across the visual field than one category, consistent with the account of global spreading. Overall, these results indicate that attention to faces modulates face processing across the visual field, suggesting that some object- and category-based attention possibly share similar global enhancement mechanisms like attention to basic visual features.

**EXPERIMENT 1**

**Materials and Methods**

**Participants**

The final data set of Experiment 1 includes 12 participants. The data of two participants were excluded from the analysis: One was excluded because of excessive artifacts in the EEG (>30% rejected because of eye movements, blinks, and muscle tension), and one participant did not finish the experiment (the person had to leave earlier than the scheduled time). All participants had normal or corrected-to-normal vision, were between the ages of 18–28 years, and gave written informed consent before the experiment. All experimental procedures were approved by the Committee on the Use of Human Subjects in Research under the institutional review board for the Faculty of Sciences of Harvard University.

**Experimental Design**

Participants attended to a stream of rapidly presented images and detected pictures of a particular category (either faces or buildings) within the stream. The stimuli were adjusted so that it was equally difficult to detect either a face or a building in the stream. First, the distractor images looked like random noise, but each one was the average of a building image and a face image whose phase had been 100% randomized. Thus, the power spectrum of the noise images equally resembled that of faces and buildings, but the noise images did not look like either a face or a building. Second, to increase task difficulty and match performance across conditions, we randomized the phase of the face and building target images using a thresholding procedure (QUEST; Watson & Pelli, 1983). Before the EEG session, participants performed 108 trials, and from trial to trial, we adjusted the level of phase randomization separately for each image set and participant to obtain a performance level of about 80% correct for each category.

On each trial, the display consisted of a central fixation cross (0.3° × 0.3°) and outlined boxes on the left and right sides of the screen that served as placeholders (4° × 4°, midpoint at 5° eccentricity). Participants were instructed to keep their gaze in the center of the screen throughout each trial. The stimulus set contained 30 grayscale images of different faces and 30 grayscale images of different buildings with high within-category diversity for each set (stimuli from Cohen et al., 2016). The faces all varied in viewpoint, hairstyle, race, and age, and the buildings included castles, skyscrapers, lighthouses, and huts. Noise stimuli were created from these images by randomizing the phase of all images (100% randomized) and taking the pixel average of a randomly selected face scramble and a randomly selected building scramble. This resulted in 30 noise images that matched the overall power of the face and building images.

The images were presented in a rapid serial visual presentation (RSVP) on either the left or right side of the screen and lasted for 4 sec (see Figure 1). Each stream consisted of either zero, one, or two faces, as well as zero, one, or two buildings, and participants were required to count the number of target stimuli (either faces or buildings) within each stream, while ignoring the other images and noise patches. All stimuli were presented in random order with the exception that the first and last two images were always noise patches and that each face or building image was followed by at least one noisepatch. Side of presentation (left, right) was varied on a trial-by-trial basis, and before each trial, a central arrow cue indicated which side to attend to. At the end of each trial, a question mark appeared in the center of the screen and participants used the number pad on the keyboard to indicate how many targets they had detected.

The target stimuli were always presented for 117 msec, but the presentation times of the nontarget stimuli were jittered across each trial between 93 and 300 msec (uniform distribution) to avoid eliciting oscillatory responses in the visual cortex (i.e., steady-state visual-evoked responses; Störmer, Winther, Li, & Andersen, 2013; Regan, 1989) because of a rhythmically flickering image stream. Participants performed 28 blocks with 18 trials each. Before each block, participants were told which category to attend to during the next block, and participants alternated between attended category from one block to the other. Half of the participants started with an “attend-to-faces” block, the remaining half started with an...
attend-to-buildings” block. After each block, participants received feedback on their performance in terms of how many points they made (20 points per correct trial).

While participants performed the task, task-irrelevant probe stimuli were presented on the unattended side at random time intervals. These stimuli were taken from a new set of 10 face images and 10 house images. Note that, for the probe stimuli, we used images that showed upfront faces and stereotypical houses (not buildings; see Supplementary Material for all stimuli used). In each trial, two faces and two houses were presented in random order, each stimulus for 100 msec. These probe stimuli were presented at random times with the constraint that they were never presented before 210 msec or after 3200 msec post RSVP onset. Furthermore, the minimum interval between each of the probes was set to 500 msec to avoid overlap in the ERPs. Although these probe stimuli were entirely task irrelevant, they were the main focus of the EEG analysis. To make the probe stimuli less disruptive to the participants, these images were presented at a smaller size than the attended RSVP stream (2° × 2°) and also at a lower contrast level (dimmed about 20%). Overall contrast was matched across the two stimulus types (faces and houses).

Electrophysiological Recordings and Analysis

To check whether behavioral performance differed between the two attention conditions, a paired t test with Attention condition as a within-subject factor (faces vs. buildings) was conducted. EEG was recorded continuously from 32 Ag/AgCl electrodes arranged according to the 10–20 system, mounted in an elastic cap, and amplified by an ActiChamp amplifier (BrainVision LLC). All scalp electrodes were referenced to an electrode on the right mastoid online and were digitized at a rate of 500 Hz. Signal processing was performed with MATLAB (The MathWorks) using the EEGLAB and ERPLAB toolboxes (Lopez-Calderon & Luck, 2014; Delorme & Makeig, 2004). Continuous EEG data were filtered offline with a bandpass of 0.01–112 Hz. Trials with horizontal eye movements, blinks, or excessive muscle movements were excluded from the analysis (cf. Störmer et al., 2014). Artifact-free data were rereferenced to the average of the left and right mastoids. ERPs were time-locked to the onset of the probe stimulus and averaged separately for face and house probes and attended category (faces, buildings), separately for each participant. ERPs were digitally low-pass filtered (−3-dB cutoff at 25 Hz), and the mean amplitude of the N170 component was measured between 170 and 200 msec at two posterior electrode sites (PO7/PO8 and P7/8) over the hemisphere contralateral to the probe stimuli, with respect to a 200-msec prestimulus period. The mean amplitudes were subjected to a repeated-measures ANOVA with Probe type and Attention condition as within-subject factors. Planned pairwise comparisons were conducted to examine which conditions were driving any differences in N170 amplitude.

In addition to the ERP analysis, we also ran a time-frequency analysis to check whether participants were continuously and reliably attending to the cued location throughout each trial. In particular, we assessed occipital alpha activity over the hemisphere ipsilateral and contralateral to the cued location as a marker of attentional allocation. Alpha activity is known to be decreased over the hemisphere contralateral to the attended location relative to ipsilateral (for a review, see Marshall, O’Shea, Jensen, & Bergmann, 2015; Kelly, Gomez-Ramirez, & Foxe, 2009; Worden, Foxe, Wang, & Simpson, 2000). For this analysis, EEG data were segmented into epochs of −400 to 40,000 msec with respect to the onset of each trial and analyzed on a single-trial basis via complex Morlet wavelets (Störmer, Feng, Martinez, McDonald, & Hillyard, 2016). Single-trial spectral amplitudes were calculated via six-cycle wavelets at 76 different frequencies separately for each electrode, time point, spatial attention condition (left vs. right), and participant. Then, single-trial spectral amplitudes were averaged separately for left- and right-cue trials, and a mean baseline (−350 to −100 msec) was subtracted from each time point for each frequency separately. Finally, conditions were collapsed across left and right cues and left and
right hemispheres to reveal activity ipsilateral and contralateral to the attended side. Alpha-band amplitude was measured over the range of 8–14 Hz at parietal-occipital electrode sites PO7/PO8 throughout the entire time interval. Paired t tests were performed to test for reliable difference with respect to the cued location.

Results

Behavior

On the basis of the thresholding procedure before the EEG session (see Methods), on average, face images were presented at a higher phase randomization rate (58%) than buildings (43%). This resulted in equal performance for both conditions in the main EEG behavioral task (see Figure 2A; 83.6% correct for faces vs. 83.0% correct for buildings; p = .83, paired t test).

ERPs: Attention-Modulated N170 Responses to Faces, but not Buildings

Visual inspection of the ERP waveforms elicited by the probes reveals a clear N170 component, which was focused over the hemisphere contralateral to the probe presentation (see Figure 2B and C); a larger amplitude to face relative to house probes in the time interval of 170–200 msec after stimulus onset. An ANOVA with the factors Probe type (face, house) and Attention condition (faces, buildings) confirmed this difference, revealing a main effect of stimulus type, F(1, 11) = 11.63, p = .005, η² = .13. There was no main effect of attention (p = .49), but there was a significant interaction between stimulus type and attention, F(1, 11) = 18.77, p = .001, η² = .6. Follow-up pairwise comparisons revealed that, for the ERPs elicited by face stimuli, the N170 was larger when participants attended to faces relative to buildings, t(11) = 2.63, p = .02, η² = .39. For the ERPs elicited by house probes, the waveform tended to be larger when participants attended to buildings relative to faces; however, this effect did not quite reach significance, t(11) = 2.16, p = .06, η² = .20.

Time–Frequency Analysis

Alpha power (8–14 Hz) was measured over the hemisphere contralateral and ipsilateral to the cued location across all trial types, revealing a clear decrease in alpha activity over the hemisphere contralateral to the attended location relative to ipsilateral, t(11) = 2.35, p = .03, η² = .33. This control analysis shows that participants maintained spatial attention at the cued location as instructed.

EXPERIMENT 2

Experiment 1 showed that, when participants attend to faces on one side of the visual field, neural responses to faces that appear in the opposite side of the visual field are amplified starting 170 msec after the face appears. This suggests that tuning attention to complex object categories, such as faces, spreads globally across the visual field and enhances processing of category-specific responses even at unattended locations. However, it remains unclear whether this results from tuning to individual low-level features of the faces or a more holistic, face-specific attentional template. To address this question, we asked participants to attend to face parts versus intact faces in a second experiment. If attending to face parts drives face-selective responses across the visual field, we would conclude that the global spread of basic feature-based attention gives rise to higher level face selectivity. Alternatively, if face-selective responses only spread across the visual field when attending to intact faces, we would conclude that the attentional tuning appears to occur at a higher level of representation (i.e., holistic face representation).

Materials and Methods

Participants

The final sample of Experiment 2 consisted of 24 participants; data of three participants had to be excluded from the data analysis because of excessive artifacts in the EEG signal (>30% of trials rejected because of eye movements, blinks, and muscle tension) and one additional participant had to be excluded because of electrode failure (P7 died during the experimental session).

Experimental Design

Stimulus presentation and task parameters were the same as in Experiment 1, except that different stimulus sets were used and additional attention conditions were included. One stimulus set contained 30 grayscale images of upfront faces that only included the inner parts of the faces (no neck or hair); the second stimulus set contained 30 grayscale images of scrambled face parts—so images contained the two eyes, nose, and mouth of a face, but in which each part would appear at random locations, not forming an intact face. These images were cropped oval so that the outer contour matched the contour of the intact face images. The third stimulus set contained 30 grayscale images of houses (three houses overlapped with houses used in the building stimulus set of Experiment 1; for all stimuli, see Supplementary Figure S1). Two stimulus sets were presented within the same RSVP stream just like in Experiment 1, with either intact faces and houses together or scrambled faces and houses together. Thus, across the different blocks, participants either attended to intact faces among houses, houses among intact faces (similar to Experiment 1), scrambled face parts among houses, or houses among scrambled face parts. Just like in Experiment 1, performance
was individually matched across conditions before the EEG session by using a thresholding procedure to adjust phase randomization of the target images with overall 128 trials. In the main EEG task, participants completed 16 blocks with 32 trials each. Probe stimuli were the same as in Experiment 1.

**Electrophysiological Recordings and Analysis**

Behavioral and EEG data were collected and analyzed as in Experiment 1. Behavioral performance was analyzed using a repeated-measures ANOVA with Attention condition as a within-subject factor. For the statistical analysis of the ERP data, an ANOVA with factors Stimulus type...
(face vs. house) and Attention condition (attend faces among houses, attend scrambled face parts among houses, attend houses among faces, attend houses among scrambled face parts) was carried out. If a Stimulus Type × Attention Condition interaction was to be found, we planned to conduct follow-up ANOVAs separately for each stimulus type (face and house) with the within-subject factor Attention condition. Finally, if this ANOVA showed significant effects for the attention condition, paired t tests were planned to test which attention conditions reliably differed from one another.

Results

Behavior

Similar to Experiment 1, on the basis of the thresholding procedure before the EEG session, on average, the image categories were presented at different phase randomization rates with 71% for intact faces, 65% for scrambled face parts, 58% for houses among intact faces, and 61% for houses among scrambled face parts. This resulted in equal performance across all conditions in the main EEG task (attend intact faces among houses: 84.8%; attend scrambled face parts among houses: 84.4%; attend houses among intact faces: 84.2%; attend houses among scrambled face parts: 85.8%; p = .91, repeated-measures ANOVA; see Figure 3A).

ERPs: Attention-modulated N170 Responses to Intact Faces, but not Face Parts or Buildings

The main ANOVA revealed a main effect of stimulus type, \(F(1, 23) = 78.63, p < .0001, \eta^2 = .23\); a main effect of attention condition, \(F(3, 23) = 3.08, p = .03, \eta^2 = .11\); and a Stimulus Type × Attention interaction, \(F(3, 23) = .03, \eta^2 = .06\) (see Supplementary Figure S2 for ERP waveforms of all conditions).

This omnibus ANOVA was followed by planned ANOVAs focusing on each stimulus type separately. For the ERPs elicited by house stimuli, there was no effect of attention, \(F(3, 23) = 1.29, p = .29\), as expected. In contrast, for ERPs elicited by face stimuli, there was a reliable effect of attention, \(F(3, 23) = 5.5, p = .0019, \eta^2 = .04\). To examine which conditions drove this effect, planned follow-up paired t tests were performed. As depicted in Figure 3C, the face-sensitive N170 was largest when participants attended to intact faces among houses, relative to all other conditions (vs. attend houses among faces, \(t(23) = 4.04, p < .0001, \eta^2 = .42\); vs. attend scrambled face parts among houses, \(t(23) = 2.45, p = .02, \eta^2 = .20\); vs. attend houses among scrambled face parts, \(t(23) = 3.71, p = .001, \eta^2 = .38\)). None of the other conditions showed any differences (all ps > .89).

Time–Frequency Analysis

As expected and consistent with Experiment 1, occipital alpha activity showed a decrease over the hemisphere
EXPERIMENTS 3 AND 4
The first two experiments show that, when attention is
tuned to a high-level category, such as faces, category-
selective processing is enhanced across the visual field.
However, it is unclear whether category-based attention
obligatorily spreads, regardless of task demands, or
whether it simply tends to do so as long as it is not det-
rimental to task performance. To test this, we conducted
two behavioral experiments in which we asked partici-
pants to attend to one category (either faces or buildings)
at two locations or to attend to different categories across
two locations (e.g., faces on the left, buildings on the
right). Thus, it would be beneficial if object-based atten-
tion spreads when attending to the same category but
detrimental when attending to different categories at
two locations. If participants can control the spatial
spreading of high-level attention, this should result in
equal performance across the conditions. Conversely, if
attention to object categories obligatorily spreads even
when this spreading is disadvantageous for the task, this
would be reflected in lower performance when attending
to distinct categories relative to the same category.

Materials and Methods
Participants
Twelve participants completed Experiment 3, and an-
other 12 participants completed Experiment 4. All exper-
imental procedures were approved by the Committee on
the Use of Human Subjects in Research under the insti-
tutional review board for the Faculty of Sciences of
Harvard University (Experiment 4) or the institutional re-
view board at the University of California, San Diego
(Experiment 3).

Experimental Design
We designed two tasks that required participants to co-
vertly monitor two image streams left and right of fixation
at the same time. Participants were instructed to either
attend to the same category of images on both sides
(faces or buildings) or attend to different categories on
both sides (faces and buildings) and to detect the simul-
taneous presentation of two images. In Experiment 3, we
instructed participants to attend to one category at a
specific location (i.e., faces left, buildings right, or vice
versa), and in Experiment 4, we instructed participants to
count any simultaneous presentation of a face and a
building as a target, regardless of location (i.e., a face
on the left and a building on the right, or vice versa,
would both count as a target stimulus). This latter design
was an attempt to ensure that participants were not
making mistakes because of confusing which category
at which location to attend to. It simply required them
to detect any two faces, any two buildings (same cat-
egory), or any face and any building (different category)
appearing at the same time, regardless of location.

In both experiments, the stimuli were the same as in
Experiment 1. The number of single face stimuli (on only
one side) or single building stimuli would vary from zero,
one, or two on every trial, and likewise, the number of
simultaneously presented images (i.e., potential targets)
was balanced such that either zero, one, or two face tar-
gets (face + face); zero, one, or two building targets
(building + building); or zero, one, or two mixed targets
(face + building) could appear.

Each stimulus was presented for 160 msec, and 20 im-
ages were presented on each trial (each RSVP stream
lasted 3.2 sec). All stimuli were presented in random
order with the exception that the first two and last two
images were always noise patches and that each
face/building image was followed by at least one noise
patch. At the end of each trial, participants had to indi-
cate how many targets they had detected by pressing that
number on the number pad of a keyboard. Which cat-
gory to attend to was varied between blocks, and partici-
pants were instructed before the start of each block
which category to attend to. In Experiment 3, which
category to attend to was written on top of each image
stream throughout each trial to facilitate matching the to-
be-attended category to each location (i.e., in the case of
two distinct categories). To match performance across
categories, the faces were presented at a higher rate of
phase randomization (64% phase-randomized) than build-
ings (50% phase-randomized) across all conditions. Partic-
ips completed six blocks with 54 trials each in each
experiment. They received feedback after every 27 trials.

Statistical Analysis
A repeated-measures ANOVA with within-subject factor
Attention condition (faces, buildings, both) was carried
out. If this ANOVA was to show a significant result, we
planned on following up with pairwise comparisons
(paired t tests) to see which conditions drove the effect.

Results
Figure 4 shows the results for Experiments 3 and 4. In
both cases, there was a clear advantage for attending to
the same category relative to attending to two distinct cat-
egories when monitoring a rapid stream of images. For
Experiment 3, there was a main effect of attention condi-
tion, F(2, 11) = 13.64, p < .0001, η² = .22. Pairwise com-
parisons revealed that participants performed lowest
when attending to two categories at different locations
(e.g., faces left, buildings right, or vice versa), relative to
attending to faces alone, t(11) = 6.17, p < .00001, η² = .77,
or buildings alone, t(11) = 4.46, p < .00001, η² = .64,
and there was no reliable difference between attending to faces versus buildings (p = .48, paired t test). Similar results were obtained in Experiment 4: We observed a main effect of attention condition, F(2, 11) = 24.51, p < .00001, η² = .36, and pairwise comparisons showed that participants performed lowest when attending to both faces and buildings at the same time, relative to when attending to faces alone, t(11) = 5.48, p < .00001, η² = .73, or buildings alone, t(11) = 6.72, p < .00001, η² = .80; there was no difference between attending to faces versus attending to buildings (p = .65, paired t test).

**DISCUSSION**

We found that attention to high-level object categories influences the feedforward sweep of category-selective neural activity across the visual field. A rapid image stream was presented on one side of the visual field, and observers attended to either faces, buildings, or scrambled face parts. To probe the selectivity of the visual system for the attended versus ignored category in regions outside the focus of attention, face and house images were flashed on the opposite side of the visual field, and the N170 component—the earliest neural marker of face processing—was examined. The N170 was amplified when participants attended to faces relative to both buildings and scrambled face parts. Together, these results suggest that the selection of high-level object categories increases the response of neurons tuned to the attended category throughout the visual field.

This spatially global spreading of attention is similar to what has been observed for attention to simple features. For example, attending to the color red among other colors in the left visual field enhances neural signals in both the left (attended) and right (unattended) visual fields, and vice versa (Störmer & Alvarez, 2014; Andersen et al., 2013; Serences & Boynton, 2007; Saenz et al., 2002). Here, we find that attention to a high-level category, specifically faces, enhances face processing at unattended, task-irrelevant locations. Could the effects observed here be simply driven by global spreading of feature-based attention? Schoenfeld, Hopf, Merkel, Heinze, and Hillyard (2014) have shown that object-based attention involves the sequential activation of feature-specific cortical modules, suggesting that when attending to an object, lower level visual features of that object are also enhanced, and the enhancement of these simple features could spread globally, ultimately resulting in enhanced processing of faces at the unattended location. We here argue that this explanation of our data is unlikely for three reasons. First, the fact that the modulation emerges exactly in the time window of the N170 makes it unlikely that this is a low-level feature spreading effect because those modulations have been shown to occur earlier at around 100 msec (Moher et al., 2014; Zhang & Luck, 2009). Second, we observe the effects at the level of the category-specific N170, an EEG marker that has been shown to be selective to face processing across many different studies (Rossion, 2014), including ours. Specifically, the N170 is not observed when observers see basic visual features that generally comprise a face (e.g., eyes, a nose, a mouth), unless those visual features are put together in a specific configuration that creates a specific object—a face. Finally, we directly tested this last point by having participants attend to scrambled faces (Experiment 2). In that case, the N170 enhancement disappears. Thus, at a minimum, participants needed to attend to the particular configuration of features, which is more than what simple feature-based experiments have shown.

The selection of high-level object categories differs in many ways from the selection of simple features. First, high-level object categories comprise multiple parts that need to occur in a specific configuration to render an object. For example, to see a face, the eyes need to be aligned next to each other, with the nose centered below...
them and the mouth at the bottom. Second, the appearance of real-world objects varies substantially from one another even within a category. They often appear at different angles, with different low-level details that need to be ignored when looking for the broad object category (e.g., such as different viewpoints; DiCarlo, Zoccolan, & Rust, 2012). Thus, unlike feature-based attention, object-based attention must rely on tuning mechanisms that encompass the general features and feature configurations of object categories, while also allowing for variations within a category. Thus, it seems particularly surprising that such complex tuning processes spread across locations and enhance visual processing of object categories across the entire visual field. It needs to be noted, however, that this study showed such high-level tuning for faces only, a particularly well-learned object category. Thus, it remains an open question whether such high-level tuning would generalize to other object categories or is unique to the processing of faces.

In Experiment 1, we chose the stimuli such that they would vary substantially in their appearance within category in an attempt to discourage participants from simply attending to low-level visual features while encouraging them to tune their attention to a complex feature configuration at the level of object categories. However, it remains possible that participants attended to some lower level aspects of the faces (or buildings) to perform the task. If this were the case, the attention system would not be tuned to the specific high-level feature configuration of a face, but possibly only to parts of the object category (e.g., the mouth). It has been shown that attending to an object attribute does enhance not only processing of that attribute but also other features of the same object (Chapman & Störmer, 2018; O’Craven et al., 1999). This would mean that, when attending to a mouth, not only would processing of the mouth be enhanced, but possibly the entire face. Accordingly, it could be the case that the enhancement of stimuli on the unattended side was driven by attention to lower level face parts rather than the entire object. We tested this possibility in Experiment 2 by asking participants to attend to scrambled face parts. The fact that the spatially global enhancement only occurred when participants attended to intact, complete faces but was absent when participants attended to scrambled face parts suggests that category-selective neural activity can be facilitated when attention is allocated to full-fledged object configurations but that attending to arbitrarily configured parts of object categories is not sufficient to drive these high-level category-selective modulations.

The present results indicate that the selection of complex object categories is implemented via feedback signals to higher levels of the visual processing hierarchy that receive inputs from the whole visual field. This raises the question of whether such high-level tuning is accomplished via direct input to higher level representations or the accumulation of modulation to a particular constellation of basic features. On either account, these findings show that attentional selection on the basis of object categories spreads globally throughout the visual field. Why would attention to high-level object categories operate in a spatially global way? In many situations, such global facilitation at the level of object categories can be beneficial. For example, when searching for an object (with no knowledge about its location), feedback signals that modulate the gain of neurons with receptive fields across the whole visual field would accelerate finding that object through parallel enhancement across locations. However, in other cases, for example, when selecting two distinct objects at different locations concurrently, spatially global modulations would cause interference between these object categories, imposing severe limits on the ability to attend to two objects at the same time. The fact that participants’ performance was lower when attending to two distinct categories at different locations relative to the same category (Experiments 3 and 4) is consistent with this interference account and suggests that the global spreading may be—at least to some degree—obligatory.

Of particular interest was at which processing stage these spatially global effects of attention would arise. Previous ERP studies investigating attentional modulations of simple features typically found modulations in between 150 and 300 msec, which is relatively late for simple features such as color or form; thus, these rather late modulations were attributed to delayed feedback signals (Anllo-Vento & Hillyard, 1996; Eimer, 1995; Hillyard & Münte, 1984). In our study, attention modulated the first reliable neural index of face-selective processing—namely, the N170 component. Although some studies have reported even earlier effects of face processing in the EEG signal (~100 msec), it is unclear whether these earlier modulations are truly because of face processing per se or instead driven by low-level differences between the stimulus sets (Desjardins & Segalowitz, 2013; Ganis, Smith, & Schendan, 2012). At this point, it appears that the N170 is the first reliable marker of face processing (Rossion, 2014). Thus, we believe it is appropriate to interpret the N170 modulations in our study as an early effect of attention on face processing. Such early modulations may seem surprising in light of previous findings on feature-based attention, which often occurred around the same time or even later. However, there is some evidence that, in situations of high competition, feature-based attention can modulate sensory processing as early as 100 msec after stimulus onset (Moher et al., 2015; Zhang & Luck, 2009). This suggests that the task we used here provided sufficient competition between high-level categories for attention to influence the earliest stages of face processing. Another possibility is that faces are “special” and can more easily be modulated by attention at an early processing stage relative to other object categories. This seems unlikely though, as many studies actually fail to find attentional modulations of the N170 component.
(Lueschow et al., 2004; Cauquil, Edmonds, & Taylor, 2000; but see Crist, Wu, Karp, & Woldorff, 2008). Nonetheless, to expand the present findings and test their generalizability, future studies should examine different types of high-level object categories to see whether similar early attentional modulations can be found.

The results reported here are thematically consistent with a previous study that suggested the presence of spatially global modulations for intermediate visual processing stages. Peelen and Kastner (2009) examined activity patterns in object-selective (LO) cortex while participants attended to bodies or cars in a real-world visual search task. When participants were asked to search for cars in the left and right visual hemifields (but not at the top and bottom on the vertical meridian), neural activation patterns in LO carried information about cars, even when the cars were not presented at the relevant positions, but only at the task-irrelevant positions. Although this study showed spatially global spreading of attention in LO, a brain region known to be sensitive to basic shape features, our data build upon these previous results by demonstrating spatially global spreading of attention to even higher levels of visual processing—namely, regions that are sensitive to the processing of object categories (i.e., faces). More importantly, the previous study was not able to address the time course of these effects because of the sluggish response of the BOLD signal in fMRI. Thus, it is unclear at what processing stage the spatially global effects in this previous study arose. Using EEG, we were here able to show that attention influences the feedforward sweep of face processing across the whole visual field.

Overall, the present data show that, when searching for complex, high-level object categories, such as faces, attention influences category-selective responses in a spatially global manner. Critically, this global boost of high-level object representations happens at the earliest stage of category-selective processing—within 170 msec after stimulus onset. Such an early influence of attention on visual processing seems particularly beneficial because it can help with the rapid detection of high-level object categories across the visual field.

**UNCITED REFERENCES**

Allison, Puce, Spencer, & McCarthy, 1999
Eimer, 2011
George, Jemel, Fiori, Chaby, & Renault, 2005
Jeffreys, 1996
Liu, Higuchi, Marantz, & Kanwisher, 2000
Mansell & Treue, 2006
Rossion et al., 2000

**Acknowledgments**

This work was supported by a Marie-Curie fellowship (EU Grant PIOF-GA-2012-329920 to V. S. S.) and a National Science Foundation grant (BCS-1829434 to V. S. S.), a National Science Foundation Graduate Research Fellowship and a National Eye Institute NRSA (F32 EY-024485 to M. A. C.), and an NSF-CAREER award (BCS-0955750 to G. A. A.). We thank Anna Riley-Shepard for help with data collection and stimulus preparation.

Reprint requests should be sent to Viola S. Störmer, Department of Psychology, University of California, San Diego, McGill Hall, Room 5314, San Diego, CA 92093, or via e-mail: vstoermer@ucsd.edu.

**REFERENCES**


